

1

BTech 451

Project in Information Technology

Mid-year Report

Yijing Wei

ID: 5284612

UPI: ywei110

June 2013

2

Abstract

This report summarizes the work that I have done so far for my BTech 451 project at

Kiwiplan in Semester One.

There are 7 main sections in this report. First I will give an introduction to the project,

what the problem is and the goal of this project as well as the background of the

company. Then the current Distributed Service Profiler will be introduced, what its

current functions are and the design of its updated version.

My main research is the research on Hibernate, which will be discussed in Chapter 3

Hibernate Research. Chapter 3 gives a detailed discussion on Hibernate architecture,

class objects, sessions, properties, persistent class, the advantages of Hibernate, what

databases are supported by Hibernate as well as Hibernate Query Language (HQL).

Apart from the research on Hibernate, I also did some research into profiling tools,

Hibernate Interceptor and the Java EmptyInterceptor interface.

I created a Hibernate testing application to deepen my understanding of Hibernate

interceptor, which will be used to interceptor queries made to the database in the

Distributed Service Profiler. The code of my testing application is available in the

appendix at the end of this report. I also created a LoggerInterceptor for the

Distributed Service Profiler.

Future work includes integrating the LoggerInterceptor with the Distributed Service

Profiler, extracting argument bytes and the return bytes from queries, matching

queries with their callers, creating and displaying query nodes and researching on

profilers for distributed systems. Details will be provided in Chapter 6 Future Work.

Difficulties include time management problems and the lack of academic knowledge

that I encountered in Semester One will also be included in this report, in Chapter 8.

3

Contents

Abstract...2

Chapter 1 Introduction

1.1 The Goal 5

1.2 The Problem 5

1.3 The Company 6

Chapter 2 Distributed Service Profiler

2.1 Introduction to Distributed Service Profiler...7

2.2 The Interface...7

2.3 The Design...9

Chapter 3 Hibernate Research

3.1 Hibernate Introduction...11

3.2 Hibernate Architecture...11

3.3 Hibernate Class Objects...13

3.4 Hibernate Sessions...14

3.5 Hibernate Properties...15

3.6 Hibernate Persistent Class..15

3.7 The Advantages of Hibernate...16

3.8 Databases supported by Hibernate...16

3.9 Hibernate Query Language (HQL)...17

Chapter 4 Other Research

4.1 Profiling Tools..18

4.2 Hibernate Interceptor..18

4.3 EmptyInterceptor Interface...19

Chapter 5 Work So Far

5.1 Hibernate Testing Application..20

5.2 LoggerInterceptor...20

Chapter 6 Future Work

6.1 Integrating the LoggerInterceptor with the Distributed Service Profiler...............21

4

6.2 Extracting argument bytes and return bytes from queries......................................21

6.3 Matching queries with their callers..21

6.4 Creating and displaying query nodes...22

6.5 Researching on profilers for distributed systems...22

Chapter 7 Difficulties

7.1 Time Management..23

7.2 Lack of Academic Knowledge...23

Code Appendix

Employee.java..24

Hibernate.cfg.xml...25

MyInterceptor.java...25

Acknowledgements...28

Bibliography...29

5

Chaper 1

Introduction

The BTech (Information Technology) is a four-year Honours degree, with selection of

courses mainly from Computer Science and Information Systems. BTech 451 is a

whole year project, compulsory for BTech final year students. It carries 45 points, the

weight of two courses. Students should guarantee 8-10 hours’ work every week. This

report describes the details of this project and the work that I have done so far for my

BTech project with Kiwiplan. It only covers the progress made in Semester One.

Progress made in Semester Two will be discussed in the final year report.

1.1 The Goal

My BTech project is carried out with Kiwiplan, which requires me to go to the

company and work in their office every week. It is a database-based project

implemented in Java. The aim of this project is to extend the current Distributed

Service Profiler, which is used by the developers at Kiwiplan, to integrate with the

database to intercept queries made to the database.

1.2 The Problem

Most services developed by Kiwiplan need to communicate with each other and with

the database. The Distributed Service Profiler was produced several years ago by a

BTech student to measure and display the information, such as the time taken for the

method to process, the argument bytes and the return bytes of the method call, on the

calls between various services, and it is used by the developers at Kiwiplan to analyse

the performance of their code and to find bottlenecks. The current Distributed Service

Profiler only displays the information of the calls and communication between

various services. The information of the queries made to the database is not specified,

even though it is included in the information on the service call. However, it is

important to know the information of the queries, such as the time taken for a query to

process and the bytes returned by it, because sometimes it is the queries that take the

longest time and needs to be improved. Currently, the developers at Kiwiplan have to

manually go through the logs to check all the queries, which is an exhausting process.

Therefore, my role is to implement an extension for the Distributed Service Profiler to

integrate with the database layer, and make it more efficient for performance analysis.

6

1.3 The Company

Kiwiplan is a software company specializing in corrugating and packaging industry

with over 30 years’ history, more than 600 customer locations and over 160

employees. It provides industry-specific products, such as Material Management

System (MMS), Supply Chain Simulator (SCS), Truck Scheduling System (TSS), and

Machine Data Collection (MDC), to corrugated, folding carton, rigid and flexible

packaging and other manufacturers in more than 36 countries world-wide. Kiwiplan

also provides consulting services to ensure its customers have the skills to utilize

Kiwiplan tools effectively.

Kiwiplan began developing software solutions to meet the needs of the corrugated

industry in 1981 in Auckland, New Zealand, and it continues to be the leading

software company in corrugating and packaging industry.

The branch that I have been working at is Kiwiplan NZ, located in East Tamaki,

Auckland [1].

7

Chapter 2

Distributed Service Profiler

This chapter gives an overview of Distributed Service Profiler, its functions, its

interface and how it works.

2.1 Introduction to Distributed Service Profiler

The Distributed Service Profiler is a profiler tool developed by a BTech student a few

years ago. It has been modified and updated by BTech students as well as the

developers at Kiwiplan ever since it was created. The Distributed Service Profiler is

used by the developers at Kiwiplan to analyse the performance of their code and find

bottlenecks.

Since Kiwiplan is a company which provides more than one service to its clients, and

most of the services provided by Kiwiplan need to communicate with other services.

Examples of the services are Material Services, Quality Management Service and

Manufacturing Service. In order to measure the performance between various services,

Kiwiplan needs a profiler tool that can be connected to various services and measure

the communication between the services, and that is the birth of Distributed Service

Profiler.

2.2 The Interface

Figure 2.1 on Page 8 is a snapshot of the interface of Distributed Service Profiler,

which was taken using the ‘Screenshot’ function of the profiler. There are two panels.

On the left side is the connection panel. It displays the services connected through the

Distributed Service Profiler and the port numbers they are connected to. Different

services are distinguished by different colours. A user can define his own port number

and colour for a service with the help of the ‘Add Connection’ button. ‘Clear Results’

will clear the current results displayed by the result panel on the left and will leave the

result panel blank.

The left panel is the result panel. Each method call is represented as a node in the

colour of its corresponding service and a method call tree is built. The root of the call

tree is always the Client, i.e. the user using the profiler. Each parent node is the caller

of its child nodes. The leaf nodes are typically the queries made to the database. The

leaf nodes are usually the ones that are of interest to the developers at Kiwiplan, since

8

they want to know which specific method calls or queries are taking longer to process

than the others so that improvements can be made. However, since no information is

given on the actual database queries, the developers have to go through the database

log files to find out which query is taking the longest time to process, which is an

exhausting process. Therefore, we want to find a way to integrate the Distributed

Service Profiler with the database layer to make it more efficient for the developers to

analyse their code.

Each node displays the information on the method call, such as the method name, the

time taken for the method to complete, the argument and return bytes of the method

and the number of hits (the number of times the method was called. The result panel

displays the results of the communication between various services. Figure 2.2 below

illustrates an example of such communication between various services. The client

(Blue Node) calls Quality Management Service (Green Node), which wants to know

all the material types from the Material Service (Purple Node), which will then query

the database to retrieve all the material types.

The Distributed Service Profile also comes with scrolling and zooming features.

Figure 2.2 Illustration of the communication between services

Client

Total Argument(s): xxx B

Total Return: xxx B

Total Time Taken: xxx ms

Total Hits: xx

createTestAttributesFromJob

Argument(s): xxx B

Return: xxx B

Time Taken: xxx ms

Hits: xx

Material Service

Argument(s): xxx B

Return: xxx B

Time Taken: xxx ms

Hits: xx

9

2.3 The Design

I developed a mockup of the Distributed Service Profiler using Balsamiq, a mockup

10

tool used by many developers, along with my own design of how I want to add the

database query node. The mock-up is shown in Figure 2.2 below.

Figure 2.2 Mockup of the Distributed Service Profiler

The design of the addition of the query nodes will be consistent with the current

Distributed Service Profiler. The connection panel on the right remains unchanged for

now. Major changes will happen to the result panel on the left. Additional features

may be added once the basic steps have been completed.

On the result panel on the left in Figure 2.2 above, the empty nodes are the normal

method calls that already exist in the current Distributed Service Profiler. The nodes

with ‘DB Call 01’ and ‘DB Call 02’ are the query nodes that will be added to the

current Distributed Service Profiler. The query nodes will display the same

information as the method call nodes, the argument size that is passed to the query, the

return bytes returned by a query, time taken for the query to process and the number

of hits. If we have a service method queries the database for information, then there

will be a query node linked to it and displays corresponding information.

11

Chapter 3

Hibernate Research

This chapter describes the research that I have done for Hibernate. Hibernate is part of

my main research, since it will be used to integrate the Distributed Service Profiler

with the database.

3.1 Hibernate Introduction

Hibernate is an object-relational mapping (ORM) library for the Java language,

providing a framework for mapping an objected-oriented domain model to a

traditional relational database [2].

The primary function provided by Hibernate is mapping Java data types to SQL data

types, i.e. Java classes to database tables, which is accomplished through the

configuration of mapping XML files. With the help of XML files, Hibernate can

generate skeletal source code for the persistence class. It relieves the developers from

90% of data persistence related programming.

The position of Hibernate is between the traditional Java objects and database

management system as shown in Figure 3.1 below.

Figure 3.1 The position of Hibernate

Hibernate is distributed under the GNU Lesser General Public License, free to

download from the Internet. [3]

3.2 Hibernate Architecture

12

Hibernate isolates the Java application and the database so that you do not have to

know the underlying APIs. Hibernate uses the database and the configuration file to

provide persistence objects and services to the application. Figure 3.2 and Figure 3.3

below are a high level view of the architecture of Hibernate and a detailed view of the

architecture of Hibernate respectively.

Figure 3.2 High level architecture of Hibernate

13

Figure 3.3 Detailed view of the architecture of Hibernate

In Figure 3.3, JTA (Java Transaction API), JDBC and JNDI (Java Naming and

Directory Interface) are the Java APIs that Hibernate uses. JDBC allows almost any

database with a JDBC driver to be supported by Hibernate. JNDI and JTA allow

Hibernate to integrate with J2EE application servers.

Configuration, session factory, session, transaction, query and criteria in Figure 3.3

are the Java objects used in Hibernate Application Architecture, and they will be

explained in section 3.3 below.

3.3 Hibernate Class Objects

1. Configuration Object: The configuration object is the first object that you

should create in a Hibernate application. It is created during the initialization

of the application and is created only once. The configuration object is a

configuration file for Hibernate, and it provides two key components: the

database connection and the class mapping setup. Configuration files are

usually either a standard Java properties file called hibernate.properties or an

XML file named hibernate.cfg.xml.

14

2. SessionFactory Object: The SessionFactory object is a thread safe object and

is used by all threads of the application. The SessionFactory object is a

heavyweight object so usually it is created during the start up of an

application and is kept for later use. Only one SessionFactory object is

needed per database.

3. Session Object: Hibernate Session object will be discussed in details in

section 3.4.

4. Transaction Object: A transaction is a unit of work with the database, and this

functionality is supported by most RDBMS. The Transaction object is an

optional object in Hibernate applications.

5. Query Object: Query objects use SQL or HQL (Hibernate Query Langueage)

string to create, manipulate and retrieve objects from a database. A Query

object is used to bind query parameters, limit the number of results returned

by the query and execute query.

6. Criteria Object: Criteria objects are used to create and execute object oriented

criteria queries to retrieve data from a database.

3.4 Hibernate Sessions

A Session object is used to establish a physical connection with the database. Unlike a

SessionFactory object, a Session object is lightweighted and is instantiated each time

an iteraction is needed with the database. The Session object should not be kept open

for a long time since it is not thread safe. A Session object should only be created and

destroyed as needed.

The main function of a Session object is to support database operations, such as create,

select, update and delete for instances of mapped classes. At any point in time,

instances may exist in one of the following states:

1. Transient: An instance is transient if it has not been associated with a Session,

and has no representation in the database.

2. Persistent: A transient instance can be made into a persistent instance by

associating it with a Session. A persistent instance will have a representation

in the database.

3. Detached: A persistent instance becomes detached once we close the

Hibernate Session.

15

3.5 Hibernate Properties

To configure Hibernate to work with a database, the following is a list of important

Hibernate properties that need to be specified:

Property Name Description

hibernate.dialect Ensures that Hibernate generates appropriate SQL

string for the database.

hibernate.connection.driver_class Specifies the JDBC driver class.

hibernate.connection.url Specifies the JDBC URL to the database.

hibernate.connection.username Specifies the username of the database.

hibernate.connection.password Specifies the password of the database.

hibernate.connection.pool_size Limits the number of connections that can be

waiting in the Hibernate database connection

pool.

hibernate.connection.autocommit Allows autocommit mode for the JDBC

connection.

Table 3.1 Hibernate Properties #1

For a database with an application server and JNDI, the following properties need to

be configured:

Property Name Description

hibernate.connection.datasource Specifies the JNDI name defined in the

application server context you are using for

the application.

hibernate.jndi.class Specifies the InitialContext class for JNDI.

hibernate.jndi.<JNDIpropertyname> Passes the JNDI properties to the JNDI

InitialContext.

hibernate.jndi.url Specifies the URL for JNDI.

hibernate.connection.username Specifies the username of the database.

hibernate.connection.password Specifies the password of the database.

Table 3.2 Hibernate Properties #2

3.6 Hibernate Persistent Class

Hibernate persistent classes are the Java object classes whose instances will be stored

in the database tables. Hibernate works best if these classes follow some simple rules,

16

known as the Plan Old Java Object (POJO) programming model. The POJO name is

used to emphasize that a given object is an ordinary Java object, not a special object,

and in particular not an Enterprise JavaBean. The main rules of POJO programming

model are listed below, however, no rules are hard requirements.

1. All persistent Java classes must have a default constructor.

2. All persistent Java classes should contain an ID in order to allow easy

identification of your objects within Hibernate and the database. ID maps to

the primary key column of a database table

3. All persistent attributes in a persistent Java class should be declared private

and have setXXX() mutators and getXXX() accessors defined.

3.7 The Advantages of Hibernate

All the main advantages of Hibernate listed below have reassured that I should use

Hibernate to integrate the Distributed Service Profiler with the database.

1. Hibernate maps Java classes to database tables using XML files without any

explicit code.

2. Hibernate provides simple APIs for inserting and accessing Java objects

directly to and from the database.

3. Only XML file needs to be modified to reflect any changes in the database.

4. Hibernate allows us to work with our familiar Java object types instead of

unfamiliar SQL types.

5. No application server is required for Hibernate.

6. Hibernate is able to handle complex relationships between objects in the

database.

7. Hibernate implements smart fetching strategies to minimize database access

and thus more efficient.

8. Hibernate provides simple querying of data.

3. 8 Databases supported by Hibernate

Databases supported by Hibernate are also included in my research to ensure that the

database used at Kiwiplan is supported by Hibernate. Hibernate supports most of the

major RDBMS. Some common RDBMS supported by Hibernate are listed below:

 HSQL Database Engine

 DB2/NT

 MySQL – This is the RDBMS used by Kiwiplan

17

 Oracle

 Microsoft SQL Server Database

 Sybase SQL Server

 FrontBase

 PostgreSQL

 Informix Dynamic Server

3.9 Hibernate Query Language (HQL)

Similar to SQL, Hibernate Query Langue (HQL) is an object-oriented query language.

SQL carries out database operations on tables and columns, whereas HQL works with

persistent objects and their properties. Hibernate translates HQL queries into

conventional SQL queries, which in turns perform operation on the database.

SQL queries can be used directly with Hibernate using Native SQL, however, it may

cause database portability hassles. Therefore, it is recommended that we use HQL

statements to avoid that problem and to take advantage of the SQL generation and

caching strategies of Hibernate.

Like SQL, in HQL keywords such as SELECT, FROM and WHERE are not case

sensitive, but properties like table names and column names are case sensitive.

The reason why I researched into HQL queries is to see how Hibernate carries out

database operations, what differences does it have from SQL queries.

18

Chapter 4

Other Research

This chapter describes the research that I have done so far related to the Distributed

Service Profiler. All the research work gives me a better understanding of how the

Distributed Service Profiler works and how I can extend it.

4.1 Profiling Tools

Program profiling or software profiling is a form of dynamic program analysis that

measures, for example, the space of memory or time complexity of a program, the

usage of particular instructions, or frequency and duration of function calls [5].

Profiling helps developers analyse their code and help them find bottlenecks, i.e. the

part of code that consumers the most memory, or the part of code that takes the

longest time to process.

JProfiler is developed by ej-technologies GmbH, and is targeted at Java EE and Java

SE applications [6]. JProfiler is a commercially licensed Java profiling tool that works

both as a stand-alone application and as a plug-in for Eclipse software development

environment. The difference between JProfiler and the Distributed Service Profiler by

Kiwiplan is that JProfiler only analyses performance within programs whereas the

Distributed Service Profiler analyses performance between various services.

4.2 Hibernate Interceptor

An interceptor is used to intercept or hook different kinds of database operations. It

allows the application to inspect and manipulate the properties of a persistent object

before it is saved, updated, deleted or loaded. Hibernate Interceptor is a Java interface

which can be configured with an application, which will be the Distributed Service

Profiler in this case, and a database to intercept queries made to the database by that

application. It will be invoked every time a select, update, insert or delete is made to

the database. We can either implement Interceptor directly or extend the

EmptyInterceptor interface.

There are two kinds of interceptors, Session-scoped and SessionFactory-scoped. A

Session-scoped interceptor is when a session is opened using one of the overloaded

SessionFactory.openSession() methods.

Session session = sf.openSession(new MyInterceptor());

19

A SessionFactory-scoped interceptor is registered with the Configuration object. The

supplied interceptor will be applied to all sessions opened from the SessionFactory.

As mentioned in section 3.3, SessionFactory objects are thread safe, which makes the

interceptors thread safe.

new Configuration().setInterceptor(new MyInterceptor());

4.3 EmptyInterceptor Interface

EmptyInterceptor interface is part of the Java Hibernate package. It is an interceptor

that does nothing [4]. EmptyInterceptor provides necessary methods that can be used

to inspect and manipulate the properties of persistent objects. I looked into

EmptyInterceptor, because I have decided to implement the methods in

EmptyInterceptor to intercept queries made to the database in my project. Not every

method in EmptyInterceptor will be implemented. The methods that I am going to

implement are listed in Table 4.1 below with their descriptions. The return types and

parameter types are omitted for simplicity.

Method Name Description

afterTransactionBegin() Called when a Hibernate transaction begins.

afterTransactionCompletion() Called after a transaction is committed or rolled

back.

onDelete() Called before an object is deleted.

onFlushDirty() Called when an object is detected to be dirty

during a flush.

onLoad() Called just before an object is initialized.

onSave() Called before an object is saved.

postFlush() Called after a flush.

preFlush() Called before a flush.

Table 4.1 Methods in EmptyInterceptor

Since this report is not the final report, other methods from the EmptyInterceptor

interface but not in Table 4.1 above may also be implemented in the project.

A stopwatch (e.g. System.currentTimeMillis()) can be put in the

afterTransactionBegin() and afterTransactionCompletion() methods to measure the

time taken for each query to complete. The total time of all queries will just be a sum

of the time taken for each query to process. To measure how many database objects

have been created, updated or deleted, we can put a counter in onSave(),

onFlushDirty() and onDelete() methods.

20

Chapter 5

Work So Far

This chapter describes the work of the coding part that I have done so far.

5.1 Hibernate Testing Application

To ensure that I understand how Hibernate works and what kind of configurations

needs to be done, I made a small Hibernate testing application. To make Hibernate

interceptor work, we need at least the following files:

 An interceptor, which extends the EmptyInterceptor, called MyInterceptor.java

in my testing application.

 A table in the database. It will be the Employee table that I created for testing

in the database. Employee table has a few attributes such as ID, first name, last

name and salary. It is initially empty and will be modified by my testing

application.

 A Java Employee class called Employee.java. Employee.java is basically just

a set of mutators and accessors.

 A mapping file which maps the Java Employee class to the Employee table in

the database. This file is called Employee.hbm.xml in my testing application.

 A Hibernate configuration file called hibernate.cfg.xml. This configuration file

specifies the details about the database such as which URL to use, the

password and the username of the database, and list the mapping files needed

for the Hibernate Interceptor.

This Hibernate testing application will be a template for the LoggerInterceptor that I

am going to implement for the Distributed Service Profiler. The code of this testing

application is included in the appendix for future use.

5.2 LoggerInterceptor

The LoggerInterceptor is the Hibernate interceptor created specifically for the

Distributed Service Profiler. It is very similar to the Hibernate testing application that

has been discussed in section 5.1 and it implements the methods as in the

MyInterceptor.java in the Hibernate testing application, onSave(), onLoad(),

onDelete(), afterTransactionBegin(), afterTransactionCompletion(), onFlushDirty(),

preFlush() and postFlush().

21

Chapter 6

Future Work

This chapter describes what needs to be done and my plan for Semester Two.

6.1 Integrating the LoggerInterceptor with the Distributed Service

Profiler

I have created the LoggerInterceptor, but it is still a standalone Java class. I need to

integrate with the Distributed Service Profiler to put it into use.

Integrating the LoggerInterceptor with the Distributed Service Profiler will not be as

easy as it is in my simple testing application, since the Distributed Service Profiler is

quite a large application, and I need to identify where exactly to put the

LoggerIntercepor in the Distributed Service Profiler. Therefore, more efforts and

possibly research need to be made.

6.2 Extracting argument bytes and return bytes from queries

Currently, the LoggerInterceptor that I implemented only returns the time taken for

each query to complete, and the number of hits. In the current Distributed Service

Profiler, each node (includes each query node that I am going to add to the Distributed

Service Profiler) needs to display the argument bytes, the return bytes, the time taken

and the number of hits. To be consistent with the Distributed Service Profiler, I need

to extract argument bytes that are passed to a query and the return bytes returned by

the query as well. I need to look into the source code of the current Distributed

Service Profiler to see how the profiler extracts the argument bytes and return bytes

from the method calls. If I cannot use the same way for queries, then more research

needs to be done.

6.3 Matching queries with their callers

Another important thing to do is to match queries with their callers so that we can

display query nodes at the correct positions. As stated earlier, each query node needs

to be attached to its caller. There are several approaches to do this, one of which is to

22

use the stack trace. Using stack trace is the simplest way, since it could all be done in

a single class. Thread.currentThread().getStackTrace() can be used to get an array of

StackTraceElements. Each element in the StackTraceElements represent a single stack

frame.

6.4 Creating and displaying query nodes

Once all the above steps have been done, we need to create and display the query

nodes. This involves me looking into the API of the current Distributed Service

Profiler, since the design of the nodes will be the same. I have not done any research

related to this part, since it can only be done after all the above steps are completed.

6.5 Researching on profilers for distributed systems

As suggest by Xinfeng Ye, my academic supervisor, I have decided to do more

research on profilers for distributed systems. The Distributed Service Profiler is quite

a large application, and it connects to all services provided by Kiwiplan making it

even more complex. In order to fully understand how the Distributed Service Profiler

works, I need to do expand my knowledge in profilers for distributed systems.

23

Chapter 7

Difficulties

This chapter describes the difficulties and concerns that rise in Semester One, and the

actions that I am going to take to overcome them.

7.1 Time Management

Although I go to Kiwiplan each week regularly, I still lack the time management skills

of balancing my other course work and this project. Semester One has been a busy

semester, since apart from this project I am taking three other courses, and working

part time at university. Most of the project is work is done at Kiwiplan, however, not

much is done when I am at university or at home. In Semester Two, 16 to 20 hours’

work each week needs to be guaranteed for this project, which involves 8 to 10 hours

at the company and the other 8 to 10 hours doing academic work. In order to improve

my time management skills, I can start with making a plan of what needs to be done

each week and follow the plan strictly to develop a good habit of completing

everything on time and even earlier than the deadline.

7.2 Lack of Academic Knowledge

The biggest difficulty that I come across is the lack of academic knowledge. When I

am examining the source code of the Distributed Service Profiler, there are a lot of

things I do not understand and I have to look into the Java API, which decreases my

efficiency significantly. The lack of academic knowledge can be complemented by

doing more research and reading more academic papers related to profilers on

distributed systems.

Overall, Semester One is the planning and investigating phase. There is still much to

be done, both academic research and the actual coding, and there are difficulties to

conquer. Since in Semester Two, 16 – 20 hours per week of work will be guaranteed, I

am expecting to finish more work than Semester One.

24

Code Appendix

This appendix contains the code for my Hibernate testing application described in

section 5.1.

Employee.java

import javax.persistence.Entity;

public class Employee {

 private int id;

 private String firstName;

 private String lastName;

 private int salary;

 public Employee() {}

 public Employee(String fname, String lname, int salary) {

 this.firstName = fname;

 this.lastName = lname;

 this.salary = salary;

 }

 public int getId() {

 return id;

 }

 public void setId(int id) {

 this.id = id;

 }

 public String getFirstName() {

 return firstName;

 }

 public void setFirstName(String first_name) {

 this.firstName = first_name;

 }

 public String getLastName() {

 return lastName;

 }

 public void setLastName(String last_name) {

 this.lastName = last_name;

 }

 public int getSalary() {

 return salary;

 }

25

 public void setSalary(int salary) {

 this.salary = salary;

 }

}

Hibernate.cfg.xml

<?xml version="1.0" encoding="utf-8"?>

<!DOCTYPE hibernate-configuration SYSTEM

"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

 <session-factory>

 <property name="hibernate.dialect">

 org.hibernate.dialect.MySQLDialect

 </property>

 <property name="hibernate.connection.driver_class">

 com.mysql.jdbc.Driver

 </property>

 <!-- Assume test is the database name -->

 <property name="hibernate.connection.url">

 jdbc:mysql://localhost:3306/tss_422

 </property>

 <property name="hibernate.connection.username">

 root

 </property>

 <property name="hibernate.connection.password">

 </property>

 <!-- List of XML mapping files -->

 <mapping resource="Employee.hbm.xml"/>

 <event type="load">

 <listener class="org.hibernate.event.def.DefaultLoadEventListener"/>

 </event>

</session-factory>

</hibernate-configuration>

MyInterceptor.java

import java.io.Serializable;

import java.util.Date;

26

import java.util.Iterator;

import org.hibernate.EmptyInterceptor;

import org.hibernate.Transaction;

import org.hibernate.type.Type;

import java.io.ByteArrayOutputStream;

public class MyInterceptor extends EmptyInterceptor {

 private static final long serialVersionUID = -1506090441120426899L;

 public static int updates;

 public static int creates;

 public static int deletes;

 public long time;

 public void onDelete(Object entity,

 Serializable id,

 Object[] state,

 String[] propertyNames,

 Type[] types) {

 // do nothing

 deletes++;

 }

 // This method is called when Employee object gets updated.

 public boolean onFlushDirty(Object entity,

 Serializable id,

 Object[] currentState,

 Object[] previousState,

 String[] propertyNames,

 Type[] types) {

 if (entity instanceof Employee) {

 //System.out.println("Update Operation");

 updates++;

 return true;

 }

 return false;

 }

 public boolean onLoad(Object entity,

 Serializable id,

 Object[] state,

27

 String[] propertyNames,

 Type[] types) {

 // do nothing

 return true;

 }

 // This method is called when Employee object gets created.

 public boolean onSave(Object entity,

 Serializable id,

 Object[] state,

 String[] propertyNames,

 Type[] types) {

 if (entity instanceof Employee) {

 //System.out.println("Create Operation");

 creates++;

 return true;

 }

 return false;

 }

 //called before commit into database

 public void preFlush(Iterator iterator) {

 //System.out.println("preFlush");

 }

 //called after committed into database

 public void postFlush(Iterator iterator) {

 //System.out.println("postFlush");

 }

 public void afterTransactionBegin(Transaction tx){

 time = System.currentTimeMillis();

 }

 public void afterTransactionCompletion(Transaction tx){

 time = System.currentTimeMillis()-time;

 }

}

28

Acknowledgements

Dr. S Manoharan – Senior Lecturer at University of Auckland

 – Coordinator for the BTech programme in Information Technology

Dr. Xin Feng Ye – Senior Lecturer at University of Auckland

 – Academic Supervisor of my BTech project

Ana Stilinovic – Senior Developer at Kiwiplan

 – Industry Supervisor of my BTech project

Tim Walker – Development Manager at Kiwiplan

I would like to thank Dr. S Manoharan for giving me this opportunity of working with

Kiwiplan, Dr. Xin Feng Ye for supervising me throughout the project, Ana Stilinovic

for being my industry supervisor at Kiwiplan and also Tim Walker for supporting me

in this project. All the above people have given me valuable advice on the project as

well as on the current trend of the IT industry. The experience that they shared with

me is something that I can never learn from a lecture and I appreciate everyone’s help.

29

Bibliography

[1] “Kiwiplan – Homepage”. http://www.kiwiplan.com/, June 2013.

[2] “Hibernate (Java)”. http://en.wikipedia.org/wiki/Hibernate_(Java), June 2013.

[3] “GNU Lesser General Public License”. http://www.gnu.org/licenses/lgpl.html,

June 2013.

[4] “EmptyInterceptor (Hibernate JavaDocs)”.

http://docs.jboss.org/hibernate/orm/3.6/javadocs/org/hibernate/EmptyInterceptor.html,

June 2013.

[5] “Profiling (computer programming)”.

http://en.wikipedia.org/wiki/Profiling_(computer_programming). June 2013.

[6] “JProfiler”. http://en.wikipedia.org/wiki/JProfiler. June 2013.

http://www.kiwiplan.com/
http://en.wikipedia.org/wiki/Hibernate_(Java)
http://www.gnu.org/licenses/lgpl.html
http://docs.jboss.org/hibernate/orm/3.6/javadocs/org/hibernate/EmptyInterceptor.html
http://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://en.wikipedia.org/wiki/JProfiler.%20June%202013

