BTech 451
Project in Information Technology

Mid-year Report

Yijing Wei
ID: 5284612
UPI: yweillO

June 2013

Abstract

This report summarizes the work that | have done so far for my BTech 451 project at
Kiwiplan in Semester One.

There are 7 main sections in this report. First | will give an introduction to the project,
what the problem is and the goal of this project as well as the background of the
company. Then the current Distributed Service Profiler will be introduced, what its
current functions are and the design of its updated version.

My main research is the research on Hibernate, which will be discussed in Chapter 3
Hibernate Research. Chapter 3 gives a detailed discussion on Hibernate architecture,
class objects, sessions, properties, persistent class, the advantages of Hibernate, what
databases are supported by Hibernate as well as Hibernate Query Language (HQL).

Apart from the research on Hibernate, | also did some research into profiling tools,
Hibernate Interceptor and the Java EmptylInterceptor interface.

| created a Hibernate testing application to deepen my understanding of Hibernate
interceptor, which will be used to interceptor queries made to the database in the
Distributed Service Profiler. The code of my testing application is available in the
appendix at the end of this report. | also created a Loggerinterceptor for the
Distributed Service Profiler.

Future work includes integrating the Loggerinterceptor with the Distributed Service
Profiler, extracting argument bytes and the return bytes from queries, matching
queries with their callers, creating and displaying query nodes and researching on
profilers for distributed systems. Details will be provided in Chapter 6 Future Work.

Difficulties include time management problems and the lack of academic knowledge
that | encountered in Semester One will also be included in this report, in Chapter 8.

Contents

AADSETACT. ..o et 2

Chapter 1 Introduction

1.1TheGoal 5
1.2 The Problem ... 5
L8 The COMPANY 6

Chapter 2 Distributed Service Profiler

2.1 Introduction to Distributed Service PrOfiler...... ieens 7
2. 2 T I I ACE. e 7
2.3 TNE DBSIGN. ...ttt bbbt bbbttt ettt b et 9

Chapter 3 Hibernate Research

3.1 Hibernate INtrOdUCTION.ciiiiiieieieieesee s 11
3.2 Hibernate ArChITECIUIE.cc.oiviieiiieeeeee e 11
3.3 Hibernate Class ODJECTS.........oiiiiiiriiieieiee st 13
3.4 HIDEINGALE SESSIONS.c.viviiiiiiiiieiieie ettt bbbt 14
3.5 HIDErNate PrOPEITIES.ccviieieieieiiere e 15
3.6 Hibernate PersiStent Class............coviiiiiiiiiiieie s 15
3.7 The Advantages Of HIDEIMNALE............cooiiiiiiei e 16
3.8 Databases supported by Hibernate............cooooiiiiiiiiii 16
3.9 Hibernate Query Language (HQL).......cooiiiiiiiiiiesc e 17

Chapter 4 Other Research

4.1 Profiling TOOIS.oviiiiiiiiiieee e 18
4.2 HIDErNate INTErCEPTON.eveii ettt 18
4.3 EmptyInterceptor INTErfaCe. ..o 19

Chapter 5 Work So Far

5.1 Hibernate Testing APPIICALION.cccoiiiiiiiieee e 20
5.2 LOQGEIINIEICEPION ... ettt 20

Chapter 6 Future Work
6.1 Integrating the Loggerinterceptor with the Distributed Service Profiler............... 21

6.2 Extracting argument bytes and return bytes from queries...........cccoccvevveiieeiireenen. 21

6.3 Matching queries with their callers...........ccoooiiiii e, 21
6.4 Creating and displaying QUErY NOUES..........ccooviiiririreiiseeie s 22
6.5 Researching on profilers for distributed SYStems............cooviiiiiiiiicnicc e, 22

Chapter 7 Difficulties

7.1 TIME MaANAGEIMENT. ...ccvveitieieeie ettt sttt be et et esreeste e e e sreenaeennas 23
7.2 Lack of Academic KNOWIEAGE.ccoiiiiiiiiiie e s 23
Code Appendix

EMPIOYEE.JAVA. ... 24
HIDErNate.CIg. XM ... 25
MY INTEICEPTOTJAVA. ...ttt 25
ACKNOWIBAGEMENTS.....cciieiii e 28

Bibliography........oooev i 29

Chaper 1
Introduction

The BTech (Information Technology) is a four-year Honours degree, with selection of
courses mainly from Computer Science and Information Systems. BTech 451 is a
whole year project, compulsory for BTech final year students. It carries 45 points, the
weight of two courses. Students should guarantee 8-10 hours’ work every week. This
report describes the details of this project and the work that | have done so far for my
BTech project with Kiwiplan. It only covers the progress made in Semester One.
Progress made in Semester Two will be discussed in the final year report.

1.1 The Goal

My BTech project is carried out with Kiwiplan, which requires me to go to the
company and work in their office every week. It is a database-based project
implemented in Java. The aim of this project is to extend the current Distributed
Service Profiler, which is used by the developers at Kiwiplan, to integrate with the
database to intercept queries made to the database.

1.2 The Problem

Most services developed by Kiwiplan need to communicate with each other and with
the database. The Distributed Service Profiler was produced several years ago by a
BTech student to measure and display the information, such as the time taken for the
method to process, the argument bytes and the return bytes of the method call, on the
calls between various services, and it is used by the developers at Kiwiplan to analyse
the performance of their code and to find bottlenecks. The current Distributed Service
Profiler only displays the information of the calls and communication between
various services. The information of the queries made to the database is not specified,
even though it is included in the information on the service call. However, it is
important to know the information of the queries, such as the time taken for a query to
process and the bytes returned by it, because sometimes it is the queries that take the
longest time and needs to be improved. Currently, the developers at Kiwiplan have to
manually go through the logs to check all the queries, which is an exhausting process.
Therefore, my role is to implement an extension for the Distributed Service Profiler to
integrate with the database layer, and make it more efficient for performance analysis.

1.3The Company

Kiwiplan

Kiwiplan is a software company specializing in corrugating and packaging industry
with over 30 years’ history, more than 600 customer locations and over 160
employees. It provides industry-specific products, such as Material Management
System (MMS), Supply Chain Simulator (SCS), Truck Scheduling System (TSS), and
Machine Data Collection (MDC), to corrugated, folding carton, rigid and flexible
packaging and other manufacturers in more than 36 countries world-wide. Kiwiplan
also provides consulting services to ensure its customers have the skills to utilize
Kiwiplan tools effectively.

Kiwiplan began developing software solutions to meet the needs of the corrugated
industry in 1981 in Auckland, New Zealand, and it continues to be the leading
software company in corrugating and packaging industry.

The branch that | have been working at is Kiwiplan NZ, located in East Tamaki,
Auckland [1].

Chapter 2
Distributed Service Profiler

This chapter gives an overview of Distributed Service Profiler, its functions, its
interface and how it works.

2.1 Introduction to Distributed Service Profiler

The Distributed Service Profiler is a profiler tool developed by a BTech student a few
years ago. It has been modified and updated by BTech students as well as the
developers at Kiwiplan ever since it was created. The Distributed Service Profiler is
used by the developers at Kiwiplan to analyse the performance of their code and find
bottlenecks.

Since Kiwiplan is a company which provides more than one service to its clients, and
most of the services provided by Kiwiplan need to communicate with other services.
Examples of the services are Material Services, Quality Management Service and
Manufacturing Service. In order to measure the performance between various services,
Kiwiplan needs a profiler tool that can be connected to various services and measure
the communication between the services, and that is the birth of Distributed Service
Profiler.

2.2 The Interface

Figure 2.1 on Page 8 is a snapshot of the interface of Distributed Service Profiler,
which was taken using the ‘Screenshot’ function of the profiler. There are two panels.
On the left side is the connection panel. It displays the services connected through the
Distributed Service Profiler and the port numbers they are connected to. Different
services are distinguished by different colours. A user can define his own port number
and colour for a service with the help of the ‘Add Connection’ button. ‘Clear Results’
will clear the current results displayed by the result panel on the left and will leave the
result panel blank.

The left panel is the result panel. Each method call is represented as a node in the
colour of its corresponding service and a method call tree is built. The root of the call
tree is always the Client, i.e. the user using the profiler. Each parent node is the caller
of its child nodes. The leaf nodes are typically the queries made to the database. The
leaf nodes are usually the ones that are of interest to the developers at Kiwiplan, since

they want to know which specific method calls or queries are taking longer to process
than the others so that improvements can be made. However, since no information is
given on the actual database queries, the developers have to go through the database
log files to find out which query is taking the longest time to process, which is an
exhausting process. Therefore, we want to find a way to integrate the Distributed
Service Profiler with the database layer to make it more efficient for the developers to
analyse their code.

Each node displays the information on the method call, such as the method name, the
time taken for the method to complete, the argument and return bytes of the method
and the number of hits (the number of times the method was called. The result panel
displays the results of the communication between various services. Figure 2.2 below
illustrates an example of such communication between various services. The client
(Blue Node) calls Quality Management Service (Green Node), which wants to know
all the material types from the Material Service (Purple Node), which will then query
the database to retrieve all the material types.

The Distributed Service Profile also comes with scrolling and zooming features.

Client createTestAttributesFromJob Material Service
Total Argument(s): xxx B Argument(s): xxx B Argument(s): xxx B

Total Return: xxx B Return: xxx B Return: xxx B
Total Time Taken: xxx ms Time Taken: xxx ms Time Taken: xxx ms

Total Hits: xx Hits: xx Hits: xx

Figure 2.2 Illustration of the communication between services

sewan s _ ‘m.!ialﬂ-.,

Do _ +E0L AR
ISR
D _ (60RT0IRIY|
SIS s ey
.mu..m._..m.u@: _ 1608 T0IRI|
pesho ey
s..___aa_o._ 1608 wayR I
AN ARSI L Py e D)
i | 0608 TOIRIY
el

Juosesn)
[wusisang

sunsey mony | somewn) sy

D)

il

~Joysdeus J3|joid 32IAIIS PIINQLIISIQ 3YL T°Z 34n314

-
N B sy = -
BN SIS N 010 S0 3 Tl i
T SIH T 5N
s S SWTET MR LIy
3 640'7 Wiy BLBE'T WnNy
8612 Buiuniyy 4 £06 (HuasunDay
PApALL TS QO[WOELS MINGIINCESS | e
T M
S 27 ueRiwa)
86597 wnmg
aert (usuntsy
pripdirmneme
paes U] TSI
Sl LE TeaR) s UG ueRLisuy
4 L6002 ke 4 £26 Wnwy
[AT ey F0TT (Susn sy ¥ SiHren
arigaefpuy prigasine U L5E zuﬂr S.sn _ns”
0 o] UG (ENL
T SiH BATL'ST lnswrluy ien)
S L0 ueRL Iy e
Brri's Uiy
3 5 sisuntoy
A b egqearan
T SiH
WP WRL L
A35 wney —
B0 (Xuran by J
SN ORI R MW _
1 51H
EUNEREE TN
ARG NN —
B0 Nty \ TS
SAPOIPRAROISE GRS SWUCPT] MR L)
RTIGTDF Whwd
1 51K B 2§ Asiueantny
S 265G LWL AUl / saldyenavepa b
BEEZ'TS Wy —
B0 (Nrunbsy
Cathipmogm s
v |
U LY L) sy
03T Wy

2.3 The Design

I developed a mockup of the Distributed Service Profiler using Balsamig, a mockup

tool used by many developers, along with my own design of how | want to add the
database query node. The mock-up is shown in Figure 2.2 below.

Profiler DR
H Connections

8000

DB Call 01

8001

8002

DB Call 02 \

Figure 2.2 Mockup of the Distributed Service Profiler

The design of the addition of the query nodes will be consistent with the current
Distributed Service Profiler. The connection panel on the right remains unchanged for
now. Major changes will happen to the result panel on the left. Additional features
may be added once the basic steps have been completed.

On the result panel on the left in Figure 2.2 above, the empty nodes are the normal
method calls that already exist in the current Distributed Service Profiler. The nodes
with ‘DB Call 01’ and ‘DB Call 02’ are the query nodes that will be added to the
current Distributed Service Profiler. The query nodes will display the same
information as the method call nodes, the argument size that is passed to the query, the
return bytes returned by a query, time taken for the query to process and the number
of hits. If we have a service method queries the database for information, then there
will be a query node linked to it and displays corresponding information.

10

Chapter 3
Hibernate Research

This chapter describes the research that | have done for Hibernate. Hibernate is part of
my main research, since it will be used to integrate the Distributed Service Profiler
with the database.

3.1 Hibernate Introduction

¥, HIBERNATE

Hibernate is an object-relational mapping (ORM) library for the Java language,
providing a framework for mapping an objected-oriented domain model to a
traditional relational database [2].

The primary function provided by Hibernate is mapping Java data types to SQL data
types, i.e. Java classes to database tables, which is accomplished through the
configuration of mapping XML files. With the help of XML files, Hibernate can
generate skeletal source code for the persistence class. It relieves the developers from
90% of data persistence related programming.

The position of Hibernate is between the traditional Java objects and database
management system as shown in Figure 3.1 below.

ORM/Hibernate

Java Objects RDBMS
Figure 3.1 The position of Hibernate

Hibernate is distributed under the GNU Lesser General Public License, free to
download from the Internet. [3]

3.2 Hibernate Architecture

11

Hibernate isolates the Java application and the database so that you do not have to
know the underlying APIs. Hibernate uses the database and the configuration file to
provide persistence objects and services to the application. Figure 3.2 and Figure 3.3
below are a high level view of the architecture of Hibernate and a detailed view of the
architecture of Hibernate respectively.

Java Application

Persistent Object

Hibernate

—_____/

Figure 3.2 High level architecture of Hibernate

12

Java Application

Persistent Object

Hibernate

e

= EEE BTN

A

ITA JDBC JNDI

S

Figure 3.3 Detailed view of the architecture of Hibernate

In Figure 3.3, JTA (Java Transaction API), JDBC and JNDI (Java Naming and
Directory Interface) are the Java APIs that Hibernate uses. JDBC allows almost any
database with a JDBC driver to be supported by Hibernate. JNDI and JTA allow
Hibernate to integrate with J2EE application servers.

Configuration, session factory, session, transaction, query and criteria in Figure 3.3
are the Java objects used in Hibernate Application Architecture, and they will be
explained in section 3.3 below.

3.3 Hibernate Class Objects

1. Configuration Object: The configuration object is the first object that you
should create in a Hibernate application. It is created during the initialization
of the application and is created only once. The configuration object is a
configuration file for Hibernate, and it provides two key components: the
database connection and the class mapping setup. Configuration files are
usually either a standard Java properties file called hibernate.properties or an
XML file named hibernate.cfg.xml.

13

SessionFactory Object: The SessionFactory object is a thread safe object and
is used by all threads of the application. The SessionFactory object is a
heavyweight object so usually it is created during the start up of an
application and is kept for later use. Only one SessionFactory object is
needed per database.

Session Object: Hibernate Session object will be discussed in details in
section 3.4.

Transaction Object: A transaction is a unit of work with the database, and this
functionality is supported by most RDBMS. The Transaction object is an
optional object in Hibernate applications.

Query Object: Query objects use SQL or HQL (Hibernate Query Langueage)
string to create, manipulate and retrieve objects from a database. A Query
object is used to bind query parameters, limit the number of results returned
by the query and execute query.

Criteria Object: Criteria objects are used to create and execute object oriented
criteria queries to retrieve data from a database.

3.4 Hibernate Sessions

A Session object is used to establish a physical connection with the database. Unlike a
SessionFactory object, a Session object is lightweighted and is instantiated each time
an iteraction is needed with the database. The Session object should not be kept open
for a long time since it is not thread safe. A Session object should only be created and
destroyed as needed.

The main function of a Session object is to support database operations, such as create,
select, update and delete for instances of mapped classes. At any point in time,
instances may exist in one of the following states:

Transient: An instance is transient if it has not been associated with a Session,
and has no representation in the database.

Persistent: A transient instance can be made into a persistent instance by
associating it with a Session. A persistent instance will have a representation
in the database.

Detached: A persistent instance becomes detached once we close the
Hibernate Session.

14

3.5 Hibernate Properties

To configure Hibernate to work with a database, the following is a list of important
Hibernate properties that need to be specified:

Property Name

Description

hibernate.dialect

Ensures that Hibernate generates appropriate SQL
string for the database.

hibernate.connection.driver_class

Specifies the JDBC driver class.

hibernate.connection.url

Specifies the JDBC URL to the database.

hibernate.connection.username

Specifies the username of the database.

hibernate.connection.password

Specifies the password of the database.

hibernate.connection.pool_size

Limits the number of connections that can be
waiting in the Hibernate database connection
pool.

hibernate.connection.autocommit

Allows autocommit mode for the JDBC
connection.

Table 3.1 Hibernate Properties #1

For a database with an application server and JNDI, the following properties need to

be configured:

Property Name

Description

hibernate.connection.datasource

Specifies the JNDI name defined in the
application server context you are using for
the application.

hibernate.jndi.class

Specifies the InitialContext class for JNDI.

hibernate.jndi.<JNDIpropertyname> | Passes the JNDI properties to the JNDI

InitialContext.

hibernate.jndi.url

Specifies the URL for JNDI.

hibernate.connection.username

Specifies the username of the database.

hibernate.connection.password

Specifies the password of the database.

Table 3.2 Hibernate Properties #2

3.6 Hibernate Persistent Class

Hibernate persistent classes are the Java object classes whose instances will be stored
in the database tables. Hibernate works best if these classes follow some simple rules,

15

known as the Plan Old Java Object (POJO) programming model. The POJO name is
used to emphasize that a given object is an ordinary Java object, not a special object,
and in particular not an Enterprise JavaBean. The main rules of POJO programming
model are listed below, however, no rules are hard requirements.

1.
2.

All persistent Java classes must have a default constructor.

All persistent Java classes should contain an ID in order to allow easy
identification of your objects within Hibernate and the database. ID maps to
the primary key column of a database table

All persistent attributes in a persistent Java class should be declared private
and have setXXX() mutators and getXXX() accessors defined.

3.7 The Advantages of Hibernate

All the main advantages of Hibernate listed below have reassured that | should use
Hibernate to integrate the Distributed Service Profiler with the database.

1.

Hibernate maps Java classes to database tables using XML files without any
explicit code.

Hibernate provides simple APIs for inserting and accessing Java objects
directly to and from the database.

Only XML file needs to be modified to reflect any changes in the database.
Hibernate allows us to work with our familiar Java object types instead of
unfamiliar SQL types.

No application server is required for Hibernate.

Hibernate is able to handle complex relationships between objects in the
database.

Hibernate implements smart fetching strategies to minimize database access
and thus more efficient.

Hibernate provides simple querying of data.

3. 8 Databases supported by Hibernate

Databases supported by Hibernate are also included in my research to ensure that the
database used at Kiwiplan is supported by Hibernate. Hibernate supports most of the
major RDBMS. Some common RDBMS supported by Hibernate are listed below:

» HSQL Database Engine
» DB2/NT
» MySQL — This is the RDBMS used by Kiwiplan

16

Oracle

Microsoft SQL Server Database
Sybase SQL Server

FrontBase

PostgreSQL

Informix Dynamic Server

YV VVVVYVY

3.9 Hibernate Query Language (HQL)

Similar to SQL, Hibernate Query Langue (HQL) is an object-oriented query language.
SQL carries out database operations on tables and columns, whereas HQL works with
persistent objects and their properties. Hibernate translates HQL queries into
conventional SQL queries, which in turns perform operation on the database.

SQL queries can be used directly with Hibernate using Native SQL, however, it may
cause database portability hassles. Therefore, it is recommended that we use HQL
statements to avoid that problem and to take advantage of the SQL generation and
caching strategies of Hibernate.

Like SQL, in HQL keywords such as SELECT, FROM and WHERE are not case
sensitive, but properties like table names and column names are case sensitive.

The reason why | researched into HQL queries is to see how Hibernate carries out
database operations, what differences does it have from SQL queries.

17

Chapter 4
Other Research

This chapter describes the research that | have done so far related to the Distributed
Service Profiler. All the research work gives me a better understanding of how the
Distributed Service Profiler works and how | can extend it.

4.1 Profiling Tools

Program profiling or software profiling is a form of dynamic program analysis that
measures, for example, the space of memory or time complexity of a program, the
usage of particular instructions, or frequency and duration of function calls [5].
Profiling helps developers analyse their code and help them find bottlenecks, i.e. the
part of code that consumers the most memory, or the part of code that takes the
longest time to process.

JProfiler is developed by ej-technologies GmbH, and is targeted at Java EE and Java
SE applications [6]. JProfiler is a commercially licensed Java profiling tool that works
both as a stand-alone application and as a plug-in for Eclipse software development
environment. The difference between JProfiler and the Distributed Service Profiler by
Kiwiplan is that JProfiler only analyses performance within programs whereas the
Distributed Service Profiler analyses performance between various services.

4.2 Hibernate Interceptor

An interceptor is used to intercept or hook different kinds of database operations. It
allows the application to inspect and manipulate the properties of a persistent object
before it is saved, updated, deleted or loaded. Hibernate Interceptor is a Java interface
which can be configured with an application, which will be the Distributed Service
Profiler in this case, and a database to intercept queries made to the database by that
application. It will be invoked every time a select, update, insert or delete is made to
the database. We can either implement Interceptor directly or extend the
Emptylnterceptor interface.

There are two kinds of interceptors, Session-scoped and SessionFactory-scoped. A
Session-scoped interceptor is when a session is opened using one of the overloaded
SessionFactory.openSession() methods.

Session session = sf.openSession(new MyInterceptor());

18

A SessionFactory-scoped interceptor is registered with the Configuration object. The
supplied interceptor will be applied to all sessions opened from the SessionFactory.
As mentioned in section 3.3, SessionFactory objects are thread safe, which makes the
interceptors thread safe.

new Configuration().setInterceptor(new MyInterceptor());

4.3 Emptyinterceptor Interface

Emptylnterceptor interface is part of the Java Hibernate package. It is an interceptor
that does nothing [4]. EmptylInterceptor provides necessary methods that can be used
to inspect and manipulate the properties of persistent objects. | looked into
Emptylnterceptor, because | have decided to implement the methods in
EmptylInterceptor to intercept queries made to the database in my project. Not every
method in Emptylnterceptor will be implemented. The methods that | am going to
implement are listed in Table 4.1 below with their descriptions. The return types and
parameter types are omitted for simplicity.

Method Name Description

afterTransactionBegin() Called when a Hibernate transaction begins.

afterTransactionCompletion() Called after a transaction is committed or rolled
back.

onDelete() Called before an object is deleted.

onFlushDirty() Called when an object is detected to be dirty
during a flush.

onLoad() Called just before an object is initialized.

onSave() Called before an object is saved.

postFlush() Called after a flush.

preFlush() Called before a flush.

Table 4.1 Methods in EmptyInterceptor

Since this report is not the final report, other methods from the EmptylInterceptor
interface but not in Table 4.1 above may also be implemented in the project.

A stopwatch (e.g. System.currentTimeMillis()) can be put in the
afterTransactionBegin() and afterTransactionCompletion() methods to measure the
time taken for each query to complete. The total time of all queries will just be a sum
of the time taken for each query to process. To measure how many database objects
have been created, updated or deleted, we can put a counter in onSave(),
onFlushDirty() and onDelete() methods.

19

Chapter 5
Work So Far

This chapter describes the work of the coding part that | have done so far.

5.1 Hibernate Testing Application

To ensure that | understand how Hibernate works and what kind of configurations
needs to be done, 1 made a small Hibernate testing application. To make Hibernate
interceptor work, we need at least the following files:

>

>

An interceptor, which extends the Emptylnterceptor, called Mylnterceptor.java
in my testing application.

A table in the database. It will be the Employee table that | created for testing
in the database. Employee table has a few attributes such as ID, first name, last
name and salary. It is initially empty and will be modified by my testing
application.

A Java Employee class called Employee.java. Employee.java is basically just
a set of mutators and accessors.

A mapping file which maps the Java Employee class to the Employee table in
the database. This file is called Employee.hbm.xml in my testing application.
A Hibernate configuration file called hibernate.cfg.xml. This configuration file
specifies the details about the database such as which URL to use, the
password and the username of the database, and list the mapping files needed
for the Hibernate Interceptor.

This Hibernate testing application will be a template for the LoggerInterceptor that |
am going to implement for the Distributed Service Profiler. The code of this testing
application is included in the appendix for future use.

5.2 Loggerinterceptor

The Loggerinterceptor is the Hibernate interceptor created specifically for the
Distributed Service Profiler. It is very similar to the Hibernate testing application that
has been discussed in section 5.1 and it implements the methods as in the
MyiInterceptor.java in the Hibernate testing application, onSave(), onLoad(),
onDelete(), afterTransactionBegin(), afterTransactionCompletion(), onFlushDirty(),
preFlush() and postFlush().

20

Chapter 6
Future Work

This chapter describes what needs to be done and my plan for Semester Two.

6.1 Integrating the Loggerinterceptor with the Distributed Service

Profiler

| have created the Loggerinterceptor, but it is still a standalone Java class. | need to
integrate with the Distributed Service Profiler to put it into use.

Integrating the Loggerinterceptor with the Distributed Service Profiler will not be as
easy as it is in my simple testing application, since the Distributed Service Profiler is
quite a large application, and | need to identify where exactly to put the
Loggerintercepor in the Distributed Service Profiler. Therefore, more efforts and
possibly research need to be made.

6.2 Extracting argument bytes and return bytes from queries

Currently, the Loggerinterceptor that | implemented only returns the time taken for
each query to complete, and the number of hits. In the current Distributed Service
Profiler, each node (includes each query node that I am going to add to the Distributed
Service Profiler) needs to display the argument bytes, the return bytes, the time taken
and the number of hits. To be consistent with the Distributed Service Profiler, I need
to extract argument bytes that are passed to a query and the return bytes returned by
the query as well. | need to look into the source code of the current Distributed
Service Profiler to see how the profiler extracts the argument bytes and return bytes
from the method calls. If I cannot use the same way for queries, then more research
needs to be done.

6.3 Matching queries with their callers

Another important thing to do is to match queries with their callers so that we can
display query nodes at the correct positions. As stated earlier, each query node needs
to be attached to its caller. There are several approaches to do this, one of which is to

21

use the stack trace. Using stack trace is the simplest way, since it could all be done in
a single class. Thread.currentThread().getStackTrace() can be used to get an array of
StackTraceElements. Each element in the StackTraceElements represent a single stack
frame.

6.4 Creating and displaying query nodes

Once all the above steps have been done, we need to create and display the query
nodes. This involves me looking into the API of the current Distributed Service
Profiler, since the design of the nodes will be the same. | have not done any research
related to this part, since it can only be done after all the above steps are completed.

6.5 Researching on profilers for distributed systems

As suggest by Xinfeng Ye, my academic supervisor, | have decided to do more
research on profilers for distributed systems. The Distributed Service Profiler is quite
a large application, and it connects to all services provided by Kiwiplan making it
even more complex. In order to fully understand how the Distributed Service Profiler
works, | need to do expand my knowledge in profilers for distributed systems.

22

Chapter 7
Difficulties

This chapter describes the difficulties and concerns that rise in Semester One, and the
actions that | am going to take to overcome them.

7.1 Time Management

Although I go to Kiwiplan each week regularly, 1 still lack the time management skills
of balancing my other course work and this project. Semester One has been a busy
semester, since apart from this project | am taking three other courses, and working
part time at university. Most of the project is work is done at Kiwiplan, however, not
much is done when | am at university or at home. In Semester Two, 16 to 20 hours’
work each week needs to be guaranteed for this project, which involves 8 to 10 hours
at the company and the other 8 to 10 hours doing academic work. In order to improve
my time management skills, | can start with making a plan of what needs to be done
each week and follow the plan strictly to develop a good habit of completing
everything on time and even earlier than the deadline.

7.2 Lack of Academic Knowledge

The biggest difficulty that | come across is the lack of academic knowledge. When |
am examining the source code of the Distributed Service Profiler, there are a lot of
things | do not understand and | have to look into the Java API, which decreases my
efficiency significantly. The lack of academic knowledge can be complemented by
doing more research and reading more academic papers related to profilers on
distributed systems.

Overall, Semester One is the planning and investigating phase. There is still much to
be done, both academic research and the actual coding, and there are difficulties to
conquer. Since in Semester Two, 16 — 20 hours per week of work will be guaranteed, |
am expecting to finish more work than Semester One.

23

Code Appendix

This appendix contains the code for my Hibernate testing application described in
section 5.1.

Employee.java

import javax.persistence.Entity;

public class Employee {
private int id;
private String firstName;
private String lastName;
private int salary;

public Employee() {}
public Employee(String fname, String Iname, int salary) {
this.firstName = fname;
this.lastName = Iname;
this.salary = salary;
}
public int getld() {
return id;
}
public void setld(intid) {
this.id = id;
}
public String getFirstName() {
return firstName;
}
public void setFirstName(String first_name) {
this.firstName = first_name;
}
public String getLastName() {
return lastName;
}
public void setLastName(String last_name) {
this.lastName = last_name;
}
public int getSalary() {
return salary;

¥

public void setSalary(int salary) {
this.salary = salary;

ks

Hibernate.cfg.xml

<?xml version="1.0" encoding="utf-8"?>
<IDOCTYPE hibernate-configuration SYSTEM
"http://www.hibernate.org/dtd/hibernate-configuration-3.0.dtd">

<hibernate-configuration>

<session-factory>

<property name="hibernate.dialect">
org.hibernate.dialect. MySQLDialect

</property>

<property name="hibernate.connection.driver_class">
com.mysql.jdbc.Driver

</property>

<I-- Assume test is the database name -->
<property name="hibernate.connection.url">
jdbc:mysql://localhost:3306/tss_422

</property>

<property name="hibernate.connection.username">
root

</property>

<property name="hibernate.connection.password">

</property>

<I-- List of XML mapping files -->
<mapping resource="Employee.hbm.xml"/>
<event type="load">

<listener class="org.hibernate.event.def.DefaultLoadEventListener"/>
</event>
</session-factory>
</hibernate-configuration>

MyiInterceptor.java

import java.io.Serializable;
import java.util.Date;

25

import java.util.lterator;

import org.hibernate.EmptylInterceptor;
import org.hibernate. Transaction;
import org.hibernate.type. Type;

import java.io.ByteArrayOutputStream;
public class MyInterceptor extends EmptyInterceptor {
private static final long serial\VersionUID = -1506090441120426899L,

public static int updates;
public static int creates;
public static int deletes;
public long time;

public void onDelete(Object entity,
Serializable id,
Object][] state,
String[] propertyNames,
Type[] types) {
// do nothing
deletes++;

ky

// This method is called when Employee object gets updated.
public boolean onFlushDirty(Object entity,
Serializable id,
Obiject[] currentState,
Obiject[] previousState,
String[] propertyNames,
Type[] types) {
if (entity instanceof Employee) {
//System.out.printIn("Update Operation™);
updates++;
return true;

¥

return false;

¥

public boolean onLoad(Object entity,
Serializable id,
Obiject][] state,

¥

String[] propertyNames,
Type[] types) {

// do nothing

return true;

¥

I/l This method is called when Employee object gets created.

public boolean onSave(Object entity,
Serializable id,
Object([] state,
String[] propertyNames,
Type[] types) {
if (entity instanceof Employee) {
//System.out.printin("Create Operation");
creates++;
return true;

ky

return false;

ky

/[called before commit into database
public void preFlush(lterator iterator) {
//System.out.printIn("preFlush");

ky

/[called after committed into database
public void postFlush(lterator iterator) {
/[System.out.printIn("postFlush™);

ky

public void afterTransactionBegin(Transaction tx){
time = System.currentTimeMillis();

ky

public void afterTransactionCompletion(Transaction tx){
time = System.currentTimeMillis()-time;

¥

27

Acknowledgements

Dr. S Manoharan — Senior Lecturer at University of Auckland
— Coordinator for the BTech programme in Information Technology

Dr. Xin Feng Ye — Senior Lecturer at University of Auckland
— Academic Supervisor of my BTech project

Ana Stilinovic — Senior Developer at Kiwiplan
— Industry Supervisor of my BTech project

Tim Walker — Development Manager at Kiwiplan

| would like to thank Dr. S Manoharan for giving me this opportunity of working with
Kiwiplan, Dr. Xin Feng Ye for supervising me throughout the project, Ana Stilinovic
for being my industry supervisor at Kiwiplan and also Tim Walker for supporting me
in this project. All the above people have given me valuable advice on the project as
well as on the current trend of the IT industry. The experience that they shared with
me is something that | can never learn from a lecture and | appreciate everyone’s help.

28

Bibliography

[1] “Kiwiplan — Homepage”. http://www.kiwiplan.com/, June 2013.

[2] “Hibernate (Java)”. http://en.wikipedia.org/wiki/Hibernate (Java), June 2013.

[3] “GNU Lesser General Public License”. http://www.gnu.org/licenses/Igpl.html,
June 2013.

[4] “EmptylInterceptor (Hibernate JavaDocs)”.
http://docs.jboss.org/hibernate/orm/3.6/javadocs/org/hibernate/Emptyinterceptor.html,
June 2013.

[5] “Profiling (computer programming)”.
http://en.wikipedia.org/wiki/Profiling (computer programming). June 2013.

[6] “JProfiler”. http://en.wikipedia.org/wiki/JProfiler. June 2013.

29

http://www.kiwiplan.com/
http://en.wikipedia.org/wiki/Hibernate_(Java)
http://www.gnu.org/licenses/lgpl.html
http://docs.jboss.org/hibernate/orm/3.6/javadocs/org/hibernate/EmptyInterceptor.html
http://en.wikipedia.org/wiki/Profiling_(computer_programming)
http://en.wikipedia.org/wiki/JProfiler.%20June%202013

